
useful for the intensification of the mass transfer being conducted in the apparatus in a 
number of cases. 

NOTATION 

c, concentration of the diffusing impurity; D, its coefficient of diffusion; Ds, ds, 
dimensional and dimensionless surface diffusion coefficients; g, acceleration of the extern- 
al mass forces; J,j, dimensionaland dimensionlessdiffusion flux density; h, film, thickness;L, 
L', linear scales; Q,q, fluidand surfactantsubstance discharge;u, velocity;U, V, dimensional 
and dimensionless surface velocities;x, y, y', longitudinal and transverse coordinates; a, 8, 
perturbations of the homogeneous flow mode; r, 7, dimensional and dimensionless surfactant 
substance concentration; A, determinant in (24); ~, ~*, quantities defined in (2) and (12); 
~, dimensionless film thickness; ~, quantity introduced in (ii); ~, v, dynamic and kinematic 
fluid viscosities; ~, dimensionless longitudinal coordinate; p, fluid density; a, coefficient 
of surface tension; the subscript zero refers to quantities in the initial section of the 
film, the asterisk subscript denotes quantities referring to the homogeneous flow mode. 
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RHEOLOGY OF STRETCHING FOR POLYMER LIQUIDS 

A. N. Prokunin and N. G. Proskurnina UDC 532.5:532.135 

Theoretical and experimental studies are presented on various effects in uniform 
isothermal stretching of elastic liquids. 

This theoretical discussion of stretching is based on the rheological equations for an 
incompressible elastic fluid [i] ; these equations give a close quantitative description of 
the behavior of such liquids under shear [2]. The minimum necessary number of rheologlcal 
constants is four, and then the equations take the form: 

a '+p6=r l sexp( - -~  t- W~)e+2cW,--2c-tW2; (1) 

cV--ce--ec~2ce~ =0;  c v = c + o c - c o ;  (2) 

- - - -  ( ~ - - ) [ (  " / ( '~ ) ] e* 1 exp - - -  W~ c - - - - 8  W~t-- c -~ , 6 W,z ; 
v 21aO 3 , 3 

l ,=Spc ;  lz=Spc-t;  2~t= ~---1 ( l--s) ;  
0 

2W, = W (It, Ia) -t- W (1=, I0; 

(3) 

(4) 
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OW. W , -  OW,.  c '  , = ( 0 0 ) 
W j -  Ol~ 0I~ ~ _ vr, ~x~, c. 

Experiment has shown that the classical potential given by the theory of elasticity is 
applicable in the range of strains used for a polymer liquid: 

W = ~t (/, - -  3). (5) 

In that case, 

W,=p. ;  W z = 0 ;  W , =  ~ . t  ( l ~ + i z _ _ 6 ) ;  W , t = W , 2 -  ~ 
2 2 (6) 

We c o n s i d e r  t h e  homogeneous n o n i n e r t i a l  s t r e t c h i n g  o f  a c y l i n d r i c a l  spec imen ;  t he  k i n e -  
m a t i c  matrices and invariants of the tensor c take the form 

:1 0 0 \ 
/ ) e = •  - - 1 / 2  0 ; o ~ - 0 ;  
\ 0 0 - -  I,,'2 

,Zz 0 0 , ,~-"- 0 0")  (7) 

c = ( 0  ).-' 0 ) ;  c - ' = (  ;'. 0 ; 

,0 0 Z -j. !0  0 Z , 

I t = S p c = Z  z ' 2~.-1; I 2 = S p c  - t = 2 ) .  ' Z -z ( X > I ) .  

We substitute (5), (6), and (7) into (2) and (3) to get equations relating the elastic 
strain ~ to the strain rate • 

] dZ G + 1 )  0- 3 - ] )  exp (--  L) = f (~; 
)~ dT 6). z (8) 

L =  p (~, 1)~(~: 4 z -  1) ( , = t ' o : r = •  
2),z 

We substitute (5), (6), and (7) into (i) and use the condition that the radial components of 
the stress become zero at the surface of the cylindrical specimen to get the dimensionless 
tensile stress: 

o'0 (oi , - -p)  0 
o -- -- -- (I - -  s) ~Z z -  X -1) ~- 3sF exp (L). (9) 

q 

Equations (8) and (9) have been given in [3] for s = 0. The following is the rate of 
irreversible strain: 

1 
ep 60 [~2.,  ~ . _  ~,-i __ ~-2] exp (--  L). (10) 

One-dimenslonal screeching (which can be performed in various ways in experiments) al- 
lows one to measure not only the stress a and strain rate r but also the elastic recovery 

a = M ~ r . *  
We now consider the relationship between a and ~; Eq. (9) implies that the strain rate 

r during uniform contraction of a specimen on unloading is defined by 

F-- ( l - - s )  (kS- - l )  exp (--  L) -- de* (II) 
Z dr 

Here r = in (Zx/Z) (see [4]) and Z x is the length of the specimen during contraction at 
time x (at the start of contraction, x = 0, we have I x = l; Ix § Z r for T § ~). It follows 
from (8) and (ii) that during relaxation we have 

dr 2)~ s 

*The elastlc-straln measures A and a are equivalent in the theory of [i]. 
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From (ii) and (12) we have 

de* 2 (1 - -  s) 

d;~ Z (2 - -  s) + s 

The solution to this equatio n on the basis that e* - 0 and ~ = Io for T = 0 is: 

~ , _  2 ( l - - s )  In s + ~ , ( 2 - - s )  
2 - -  s s + ~o (2  - -  s)  (13) 

Formula (13) applies for any T (0 < T < co), where T is reckoned from the start of un- 
loading; we pass to the limit ~ § ~ (l § i, l T § I r) in (13) to get equations relating a 
and %o during stretching (here and subsequently we replace %@ by % for simplicity)- 

2( l--s~ 2--.s 

OF~ '. " [ 5 -  / ' ' 2 -  5 ) l c ) "  . 2--s . ~ __ ~--.%2 CX, 2(l--~) 2--S'S ( 1 4 )  
-- .j 

Note that B is absent from (14), while the relation between ~ and e is of power-law type for 
sufficiently large. 

The rate of irreversible strain is determined by experiment as 

e i, = : f - -  -!4 I n a .  (15) 
dr  

Then (12), (14), and (15) give 

(16) 
�9 \ a d ) .  J a d)~ 6)~ 2 

Note that ep and e* in (i0) are two measures of the rate of irreversible strain; the 
second is dependent onl~ on ~, but ep is additionally dependent on F. Further, ~ - o/3 in 
the range of linear behavior of the liquid (in ~ << i) [4]. 

We now consider stretching with F - const; then (9) can be integrated. If T is small, 
vlz., FT << i, we have % = erT,% i.e., Volgt's nonlinear model can be used to describe the 
strain. The range in A showing elastic behavior then increases with r. Steady-state flow 
is attained (d%/dv - 0) for 8 - 0 and for any F. The usual quantity determined by experi- 
ment is the dimensionless effective viscosity o/F in steady-state flow ([3 = 0) and the value 
ranges from 3 to 6 -- 3s as (8) shows. 

If 8 # 0 [3], we derive the value rcr , vlz., the critical value for which no state of 
steady flow is attained, i.e., where o(T)/r and I(T) both increase with T. Further, if B < 
i0 -2, we get that rcr - */aeB, and (8) implies that I - e FT for I § -. 

Therefore, if F > Fcr >> 1 and T is large or small we have A = e FT and (9) gives an ap- 
proximate relationship for o as 

, 2 

We computed the T dependence of ~, o, ~, and ep by means of (8), (9), (14), and (16), re- 
spectively. The results are compared with measures in what follows. 

We used molten polylsobutylene type P-20 (molecular weight about lO s) , which differed 
somewhat from that used in [5, 6]. The maximum (Newtonian) viscosity of the polymer was 
q = i.i*i0 e Pa.sec. The equilibrium elastic modulus [4] was G = 1.5.10 s Pa. All the ex- 
periments were performed at 22@C. 

Stretching with • - const was performed either in a system in which the base length of 
the specimen was constant [5], in which case the stretching was performed with a single 
roller, or else with a varlable-base systems [6]. Stress-relaxation measurements were also 
performed; in the latter case, the stretching was halted almost instantaneously and the 
stress as a function of time at a fixed length was then recorded. 

The systems of [5, 6] gave strain rates between 3.84.10 -4 andlO -~ sec-* and strains 
e = rQ2/r = up to 40 (ro and r are the radii of the specimen before deformation and at the 

%Here e is the base of the natural logarithm. 
~Thls apparatus was built in the workshops of the Institute of Chemical Fibers, Academy of 
Sciences of the USSR. 
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Fig. i. Effects of time T on~ a) effective viscos- 
ity o/F; b) elastic recovery u; the points are from 
experiment, while the solid lines are from theory: 
1-6) r - 0.768, 2.4, 7.68, 24, 76.8, and 200, re- 
spectively. 

time of deformation). The restrictions on • and c for the system of [6] were related to de- 
sign features and to nonuniformities appearing in the specimens when the radius of the latter 
was small. The restrictions on e for the system of [5] were related only to the nonuniformi- 
ties. During stress relaxation (specimen theoretically immobile) the nonuniformity along 
the specimen may result in a certain amount of movement, particularly if the initial strain 
is large, and it is even possible for the specimen to fail during stretching and relaxation. 
The failure is evidently due to the differing time curves for the relaxation processes occur- 
ring for different initial states of strain. 

The homogeneity of the specimens was always checked at least partially by photography 
at a fixed point. 

The following T curves were recorded: stretching force F, total strain r (i.e., radius 
r and stress o), and elastic recovery ~ = I/lr; here ~r is the length to which a section of 
length I in the stretched specimen tends when the external stress is eliminated (o - 0), vlz., 
the theoretical value for t § ~. In practice, the contraction of a piece of specimen of 
length I cut by means of knives was essentially complete within i h [4]. 

Certain further details of the measurements are given below in discussing the results. 
The spread taken over the entire set of data was fairly large, and it rose to • for large 
s tra ins. 

Figure i shows the T dependence of the effective viscosity o/P - o'/n• and of a for 
various F = • here 8 - 2-103 sec and n = I.i'i0 m Pa.sec. Steady-state y~eid was obtalned 
for F < 24, and the curve drawn through the points i corresponds to linear behavior of the 
liquid. The effective viscosity o/r and u increase with F in steady-state yield, as has been 
reported previously [6, 7]. The larger F, the smaller the T at which this steady yield oc- 
curs. No steady state was reached for F > 24, but it is not known whether this is an in- 
herent feature or merely a consequence of the above restrictions on e. 

Figure 2a shows the a dependence of the dimensional stress o' (the constants of the 
liquid are shown in dimensional form in Fig. 2 for simplicity). The open symbols represent 
o'(~) during stretching at various constant rates of strain. These curves are derived from 
the measurements of Fig. la and b. The last point for • < 1.2.10 -3 sec -z (the points with 
the largest u) corresponds tosteady-state yield. The filled symbols in Fig. 2a represent 
the envelope. The method of deriving this is illustrated by Fig. 2b. 

The points in Fig. 2b glve o'(u) for stress relaxation, while the points with arrows 
represent (o', a) and are the points from which the relaxation was started. We now consider 
the derivation of the o'(a) curves. During stress relaxation, the stress o'(t) alters (the 
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Fig. 2. The a dependence of ~' in Pa: a) for stretch- 
ing (1-6): • = 3.84.10 -~, (1.2, 3.84).10 -s, (1.2, 3.84). 
i0 -i and I0 -z sec-', where the filled symbols are the 
envelope values; b) during stress relaxation after 
stretching (1-4): • " i0 -i sec-" and in e = 1.3, 1.8, 2.35 
and 2.9; 5,6) • - 3.84.10 -2 sec -x and in e ffi 1.15 and 2.9; 
7-9) ~ = 1.2.i0 -a sec -z, in e = 1.30, 2.16, 2.9; i0) • = 

3.84-i0 -s sec -i, in e - 2.9; 11) • = 1.2.10 -s sec -x, in e - 
2.6. 

specimen has previously been stretched), and for this purpose the specimen was cut up at 
various times t and the elastic recovery a was measured. Naturally, this interfered with 
the stress relaxation, and the experiment had to be repeated to yield the next value of a. 
This gave a(t) during stress relaxation. The u(t) and a'(t) curves (not given here) were 
used to plot the a'(a) curves of Fig. 2b. 

Figure 2b shows that the o'(u) data fit a single curve if the relaxation starts from 
(a', a) points lying on that curve (e.g., points 3, 8, and ii). Note that e is roughly the 
same for these points. The stresses during relaxation were produced by stretching specimens 
to various • All the curves of Fig. 2b converge to a single curve, which is the envelope 
for the various o'(u) curves (the stretching and relaxation curves arise from this, as parts 
a and b of Fig. 2 show). Forthcoming papers will demonstrate that the envelope constructed 
in this way remains the same for other states of deformation. The envelope is attained most 
rapidly as a varies if one starts from the steady-state points on the stretching curve. 

Figure 3 shows ep(a) = r - [(d in~)/dT] forvarious r; these curves were derived from 
the a(T) derived during stretching with r = const (Fig. ib). The ev(a) curves resemble the 
o(a) curves in having an envelope (filled symbols in Fig. 3). This-envelope was derived by 
constructing the following curves (not given here): 

! de 
e~> (~) = ~ d~ ( 1 7 )  

Here a(T) i s  the  t ime dependence  of  t he  e l a s t i c  r e c o v e r y  du r ing  r e l a x a t i o n  ( s ee  above f o r  
the  method of d e r i v a t i o n ) .  Formula (17) f o l l o w s  from the  d e f i n i t i o n  of  ep f o r  r ~ 0, and 
the  c u r v e s  g i v e n  by (17) co n v e rg e  to  a s i n g l e  c u r v e  ( t h e  enve lope)  d u r i n g  s t r e s s  r e l a x a t i o n  
(F ig .  2b) ,  as  f o r  a ( a ) .  The c u r v e s  of  (17) a t t a i n  t h e  enve lope  most  r a p i d l y  i f  the  a(~)  
curves are derived starting from the state of steady yield during stretching. 
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We now compare the theoretical results with experiment. We start with the determina- 
tion of the unknown constants q, s, and e. 

The viscosity n was taken as the maximum(Newtonian) viscosity as determined in the re- 
gion of linear behavior from steady-state experiments on shear and stretching [4]. The 
values for the viscosity given by both methods were the same within the error of the experi- 
ments and were n - 1.1"10 6 Pa.sec. 

We determined s and 8 by means of the envelope derived for o'(a) from the stress-re- 
laxation experiments (Fig. 2). The following dimensional form can be given for the theoreti- 
cal envelope, as is clear from (9) with r ~ 0: 

0 (~2 _ ~-~). (18) 

Figure 2a shows the t h e o r e t i c a l  envelope denoted hy I ;  we have from (14) and (17) tha t  the 
following applies for ~ sufflclently large: 

2--s 2--~ 

~ ~ 2(I-s); ~  ~ ~'-~ (19) 

and therefore (19) can be plotted in log--log coordinates to give a curve approximating 
closely to a straight line having the coefficient of proportionality =2.5 = (2 -- s)/(l -- s), 
which gives s = 0.35. 

As q is known (see above) and s has been determined, we merely specify that (19) must 
agree with experiment (see the filled symbols in Fig. 2a), and this gives 8 = 2.10 s sec. 

A point here is that all the other theoretical curves given in this paper have been 
calculated from the 8 and s derived solely from the observed envelope. Also, the relaxation 
time derived as n/G = 0.8.105 sec is only half the 8 derived from the envelope. 

In accordance with (9), the observed relaxation curves (Fig. 2b) were approximated by 
means of an instantaneous Jump of 3qs• exp (L) from the point of onset of relaxation to the 
envelope, with the subsequent change occurring along the envelope as u decreased. 

The classical potential of (5) from the theory of elasticlty was used in deriving (18), 
and this is clearly appropriate. 

Parts a and b of Fig. 1 (solid lines) show theoretical T-dependence curves for o/r and 
u as calculated from (8), (9), and (14) for B " O; the main deficiency of the theoretical 
description is that • ~ 5.0, whereas the experimental curves run up to values in excess of 
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Fig. 4. Theoretical z-dependence of: 
i) total strain e; 2) elastic strain 
~ 3) elastic recovery a. 

8. This was overcome by assuming ~ - 1.72.10 -s, and a point here is that steady-state yield 
does not exist for F = 76.8. 

Here and subsequently the solid lines correspond to B = 0, while the broken lines cor- 
respond to B = 1.72"i0-s; if the theoretical results for the two cases are the same, only 
the solid line is given. 

The theoretical curves of Fig. 2a have been derived from the theoretical o(T) of Fig. 
ib together with (9) and (14). 

The ep of Fig. 3 were calculated from (16) for stretching; the theoretical envelope for 
ep derived from this formula for F - 0 takes the form 

e* - -  l d ~  (L ~ l ) ( ; t  3 - 1 )  e x p ( - - L ) .  
o ~ d)~ 6~. 2 

The envelope is dependent on 8 and is denoted by I in Fig. 3. 

We now compare the theoretical relationships for e = e FT , A(T), and a(T); these curves 
are shown in Fig. 4 for F = 76.8. Note that X = e for T small, i.e., the medium deforms as 
a nonlinear Voigt solid, as (9) shows for L - c. Large elastic strains occur (e.g., ~ = 
~ Y0 in Fig. 4). Note that the elastic recovery ~ is less than the elastic strain A (a 

5 for ~ - e = i0 in Fig. 4). 

These results show that the theoretical description deteriorates for all r as a de- 
creases (the linear range of description). The description is improved somewhat for fairly 
large r and a by the introduction of B. 

The strain occurring for T small, when there is virtually no yield, shows that the fail- 
ure observed, e.g., with monodisperse polymers [8] can be explained without the need to in- 
voke a mechanism for the loss of fluidity (B ~ 0) [3]. 

The Voigt nonlinear model of (i)-(3) with 8 = 0 and ep* = 0 can thus be of value in 
solving many practical problems in the deformation of melts and concentrated solutlons of 
polymers. 

NOTATION 

o', stress tensor; p, isotropic pressure; 6, unit tensor; e, strain-rate tensor; c, 
elastic-strain tensor; I,, 12, major invariants; W(I~, 12), elastic potential; ep*, tensor 
for irreverslble-straln rate; ~, vortex tensor; 13, dimensionless parameter characterizing 
elasticity of macromolecular chains (0 < [3 < i); n, maximum (Newtonian) viscosity; O, re- 
laxation time; s, ratio of retardation ~ime--to relaxation time (0 < s < i); t, T, dimen- 
sional and dimensionless times; Va, velocity components; Xa, Cartesian coordinates; x, s 
dimensional and dimensionless longitudinal strain rates; X, a, measures of elastic str alni 
o', o, dimensionaland dimensionless tensile stresses; l, sample length at instant T; Zr, 
limit to ~ in stress relaxation (o - 0) for T -~--; c, total longitudinal strain; r@, r, ini- 
tial and current sample radii; F, tensile force. 

i ,  
2.  

. 
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HEAT EXCHANGE IN THE FLOW OF A SYSTEM OF AXISYMMETRIC LIQUID 

JETS ONTO A NORMALLY PLACED PLANE BARRIER 

P. A. Pyass and A. A. Kiis UDC 536.242:532.525.2 

The influence of the geometrical and physical parameters of a system of axlsym- 
metric jets impinging on a barrier on the heat-transfer coefficient and the final 
temperature of the liquid is analyzed. 

The flow arising in the region of interaction of a turbulent jet with a barrier has a 
whole series of peculiarities. The pattern of motion is so complicated in details that a 
theoretical calculation of the boundary layer becomes very difficult [3]. It is therefore 
necessary to conduct experimental investigations. 

A number of reports [i, 5, 6, 8, 9, 10] have been devoted to heat exchange in the inter- 
action of single jets of dropping liquids with barriers, but there is an absence of investiga- 
tions in which heat exchange in the interaction of a system of axisymmetric nonflooded Jets 
of dropping liquid with a surface is analyzed, which might be used to design and build highly 
efficient liquid-jet heat exchangers. In the given case it should be noted that the average 
heat-transfer coefficient from a wall to a liquid depends on the velocity of the liquid, the 
geometrical characteristics of the system, and the thermophysical properties of the liquid: 

= ~(w; de: f; F; p; ~; v; c,) .  (1 )  

Using dimensional analysis, in dimensionless form we find 

--~ ; - - :  --- 
pc,v  F 

o r  

Nu : :  q~Re; Pr; A/). (2) 

To obtain Eq. (2) in explicit form we constructed a model of a Jet heat exchanger and 
carried out experimental investigations. The area of the heat-exchange surface of the ap- 
paratus was 0.0145 m a, the number of nozzles in the perforated plate ranged from 33 to 121, 
and the dimensionless distance between the heat-exchange surface and the nozzles ranged 
from 50 to 100. The nozzle diameter was the same in all the tests and equalled 0.5 mm. 
Water was used as the liquid and moist steam from an industrial boiler served as the heat- 
transfer agent. 

The final temperature of the falling liquid film was taken as the controlling tempera- 
ture in the treatment of the test data. The height L of the heated plate was taken as the 
characteristic dimension in the Nusselt number. The Reynolds number was converted to the 
form Re - 4r/pv. 
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